The site works in a test mode!
    Areas Of Activity

  • Screening of biological activity of substances and disclosure of molecular mechanisms of their action;
  • Search for new bioregulators;
  • Creation of disease models (in vitro, in vivo, in silico), in order to study the molecular mechanisms of the development of pathologies;
  • Application of bioinformatics methods to reveal the mechanisms of molecular interaction;
  • Development of cellular biomedical technologies;
  • Study of the mechanisms of formation of the adaptive response of plants to environmental factors.
                                                              Scientific research projects
  1. Fundamental project: ФЗ-20200929214 «The role of inorganic polyphosphates in signal transduction in mammalian cells», 2021 – 2026., PI, Artyom Y. Baev, PhD
  2. Applied project ИИРВ-2021-463 “Development of a digital platform for monitoring the processes of creating scientific developments of biotechnological products” 2021 – 2023, PI, PhD, Levitskaya Yu.V, PhD
  3. Applied project: ПЗ-2021030217 «Development of in vitro and in vivo simulation models of pathological conditions and diseases in humans and animals – model of ischemic stroke», 2021-2024, PI, Artyom Y. Baev, PhD
  4. Applied project: № AL-36-2105821c «Development of in silico simulation models of pathological conditions and diseases in humans and animals» 2022-2025, PI, Jamoliddin I. Razzokov, DSc
  5. Applied project ПЗ-20170930211 “Screening of the antihypoxant properties of proanthocyanidins isolated from local plant materials as promising metabolism regulators”, 2018-2020, PI, Radjabova G.G. PhD.
  6. Fundamental project BV-M-F5-001 “Molecular mechanisms of stress resistance of plants in the semiarid zone”. 2017-2020, PI, Levitskaya Y.V, PhD.
  7. Youth project MU-F3-20171025118 “Regulation of the level of inorganic polyphosphates as a way of protection against ischemia-reperfusion”, 2018-2019, PI, A.Y. Baev, PhD.
  8. Youth project MU-FZ-2017102543 “Analysis of primary metabolites of medical plants of Uzbekistan and their role in adaptation processes to adverse environmental factors”, 2018-2019, PI, Rakhmatullina N.Sh.
                                                                 International Cooperation

Laboratory of prof. Andrey Y. Abramov, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK

  1. Laboratory of prof. Evgeny Pavlov, College of Dentistry, New York University, New York, NY, USA.
  2. Laboratory of Cellular Physiology and Pathology, Orel State University, Orel, Russia
  3. Laboratory of Intracellular Signaling, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
  4. “Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus”
  5. Kazan Federal University of the Russian Federation
                                                                 Rated scientific publications

  1. Baev, A.Y., Abramov, A.Y. (2022). Inorganic Polyphosphate and F0F1-ATP Synthase of Mammalian Mitochondria. In: Müller, W.E.G., Schröder, H.C., Suess, P., Wang, X. (eds) Inorganic Polyphosphates. Progress in Molecular and Subcellular Biology, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-031-01237-2_1
  2. Baev A.Y., Vinokurov A. Y., Novikova I. N., Dremin V. V., Potapova E. V., Abramov A. Y., Interaction of Mitochondrial Calcium and ROS in Neurodegeneration, Cells. ‒ 2022. ‒ V. 11, № 4; https://doi.org/10.3390/cells11040706; Impact Factor (Web of Sciense) – 6
  3. Baev A.Y., Charishnikova O. S., Khasanov F. A., Nebesnaya K. S., Makhmudov A. R., Rakhmedova M. T., Khushbaktova Z. A., Syrov V. N., Levitskaya Y. V., Ecdysterone prevents negative effect of acute immobilization stress on energy metabolism of rat liver mitochondria, J Steroid Biochem Mol Biol. ‒ 2022. ‒ V. 219. ‒ p. 106066; https://doi.org/10.1016/j.jsbmb.2022.106066; Scopus cite score 2021 – 8
  4. Garib V, Katsamaki S, Turdikulova S, Levitskaya Y, Zahidova N, Bus G, Karamova K, Rakhmedova M, Magbulova N, Bruhov A, Garib FY and Abdurakhmonov IY., Milk of Cow and Goat, Immunized by Recombinant Protein Vaccine ZF-UZ-VAC2001(Zifivax), Contains Neutralizing Antibodies Against SARS-CoV-2 and Remains Active After Standard Milk Pasteurization. (2022) Front. Nutr. 9:901871. doi: 10.3389/fnut.2022.901871 Impact Factor (Web of Science) –6.576
  5. Kamburova V. S., Ubaydullaeva K. A., Shermatov Sh. E., Buriev Z.T., Charishnikova O. S., Nebesnaya K.S., Sukocheva O. A. Influence of RNA interference of phytochrome A1 gene on activity of antioxidant system in cotton. // Physiological and Molecular Plant Pathology. Elsevier Ltd. 117 (2022) 101751. р.7. Available online 13 November 2021. https://doi.org/10.1016/j.pmpp.2021.101751. Scopus cite score 2021 – 4
  6. Ravshan Z. Sabirov, Md. Rafiqul Islam, Toshiaki Okada, Petr G. Merzlyak, Ranokhon S. Kurbannazarova, Nargiza A. Tsiferova and Yasunobu Okada. The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners and Physiological/Pathophysiological Implications, Y. Life, 2021, 11(6), 509 https://doi.org/10.3390/life11060509 Impact Factor (Web of Sciense) – 817
  7. Chorieva, NM, Fayziev, DD, Tsiferova, NA, et al. Lytic and sublytic effects of gossypol on red blood cells and thymocytes. Clin Exp Pharmacol Physiol. 2021; 48: 227– 237. https://doi.org/10.1111/1440-1681.13429 Scopus cite score 2021 – 6
  8. Abdullaev,A., Abdurakhimov,A., Muminov,M., Nuriddinov,S., Dalimova,D., Tsoy,V., Tsay,E., Bozorov,S., Charishnikova,O., Dalimova,D. and Turdikulova,S. Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UZB/UZB-6/2020 nucleocapsid phosphoprotein (N) gene, partial cds. https://www.ncbi.nlm.nih.gov/nuccore/MT447189.1
  9. Baek, A. Sariev*, S. Lee, S. -Y. Dong, S. Royer and H. Kim, “Deep Cerebellar Low-Intensity Focused Ultrasound Stimulation Restores Interhemispheric Balance after Ischemic Stroke in Mice,” in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 9, pp. 2073-2079, Sept. 2020, doi:10.1109/TNSRE.2020.3002207. Impact Factor (Web of Science) –3.8
  10. Artyom Y. Baev, Plamena R. Angelova, Andrey Y. Abramov; osmoticganic polycphosphate is produced and hydrolyzed in F0F1-ATP synthase of mammalian mitochondria // Biochem J 30 April 2020; 477 (8): 1515–1524. doi: https://doi.org/10.1042/BCJ20200042. Scopus cite score (2019 год) – 7.6
  11. Tsiferova, N.A., Khamidova, O. J., Amonov, A. U., Rakhimova, M. B., Rustamova, S. I., Kurbannazaova, R. Sh., Merzlyak, P. G., Abdulladjanova, N. G. and Sabirov, R. Z. “Tannins, novel inhibitors of the volume regulation and the volume-sensitive anion channel” European Pharmaceutical Journal, vol.66, no.2, 2019, pp.37-44. https://doi.org/10.2478/afpuc-2019-0016 Scopus cite score 2021 – 6
  12. Rustamova S. I., Tsiferova N. A., Khamidova O. J., Kurbannazarova R. S., Merzlyak P. G., Khushbaktova Z. A., Syrov V. N., Botirov E. K., Eshbakova K. A., Sabirov R. Z. Effect of plant flavonoids on the volume regulation of rat thymocytes under hypoosmotic stress // Pharmacol Rep. ‒ 2019. ‒ V. 71, № 6. ‒ p. 1079-1087. https://doi.org/10.1016/j.pharep.2019.05.023 Impact Factor (Web of Science) –3.027
  13. Jung, S. Kim, A. Sariev, F. Sharif, D. Kim, S. Royer, “Dentate granule and mossy cells exhibit distinct spatiotemporal responses to local change in a one-dimensional landscape of visual-tactile cues” Scientific Reports (2019) 9:9545; doi.org/10.1038/s41598-019-45983-6. Impact Factor (Web of Science) –4.38
  14. Akinshina N.G., Azizov A.A., Shtonda N.I., Khalmurzayeva A.I., Rakhmatullina N.Sh. Ecological Plasticity of the Photosynthetic Apparatus of Hibiscus syriacus under Pressure of High Temperature, Insolation, and Air Pollution, , Moscow University Biological Sciences Bulletin, 2018, Vol. 73, No. 3, pp. 162–171. Scopus cite score 2019 – 1
  15. Ludtmann M. H. R., Angelova P. R., Horrocks M. H., Choi M. L., Rodrigues M., Baev A. Y., Berezhnov A. V., Yao Z., Little D., Banushi B., Al-Menhali A. S., Ranasinghe R. T., Whiten D. R., Yapom R., Dolt K. S., Devine M. J., Gissen P., Kunath T., Jaganjac M., Pavlov E. V., Klenerman D., Abramov A. Y., Gandhi S. alpha-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease // Nature Communications. ‒ 2018. ‒ V. 9, № 1. ‒ pp. 2293. DOI: https://doi.org/10.1038/s41467-018-04422-2. Scopus cite score – 1
  16. Baev A. Y., Elustondo P. A., Negoda A., Pavlov E. V. Osmotic regulation of the mitochondrial permeability transition pore investigated by light scattering, fluorescence and electron microscopy techniques // Anal. Biochem. ‒ 2018. ‒ V. 552. ‒ pp. 38-44. DOI: https://doi.org/10.1016/j.ab.2017.07.006. Scopus cite score – 2
  17. Liu B., Abdullaev O., Mirzaakhmedov Sh.Ya.,Yili A., Aisa H.А., Charishnikova O.S.. Isolation and Purification of Active Proteases from Sheep Abomasum and Their Biological Activity Chemistry of Natural Compounds.-2018.-V.54.-№3.-p.523-526. Scopus cite score (2018) – 0.8
  18. lyich, T., Charishnikova, O., Sekowski, S. et al. Ferutinin Induces Membrane Depolarization, Permeability Transition Pore Formation, and Respiration Uncoupling in Isolated Rat Liver Mitochondria by Stimulation of Ca2+-Permeability. J Membrane Biol 251, 563–572 (2018). https://doi.org/10.1007/s00232-018-0032-0  Scopus cite score (2018) – 8
  19. Baek, A. Sariev, M. Kim, H. Lee, J. Kim and H. Kim, “A neuroprotective brain stimulation for vulnerable cerebellar Purkinje cell after ischemic stroke: a study with low-intensity focused ultrasound,”2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, 2018, pp. 4744-4747.doi: 10.1109/EMBC.2018.8513138. Impact Factor (Web of Science) –1.12
  20. Baev A. Y., Negoda A., Abramov A. Y. Modulation of mitochondrial ion transport by inorganic polyphosphate – essential role in mitochondrial permeability transition pore // J BioenergBiomembr.‒ 2017. ‒ V. 49, № 1. ‒ pp. 49-55. ScopusCiteScore – 2.26
  21. Artyom Y. Baev, Plamena R. Angelova and Andrey Y. Abramov. Role of Inorganic Polyphosphate in the Cells of the Mammalian Brain// Chapter 8 in ‘Inorganic Polyphosphates in Eukaryotic Cells’ book, Editors Tatiana Kulakovskaya, Evgeny Pavlov, Elena N. Dedkova, pages 115-122, Springer, 2016
  22. Dubis А., Zamaraeva M., Siergiejczyk L., Charishnikova O., Shlyonsky V. Ferutinin as a Ca(2+)complexone: lipid bilayers, conductometry, FT-IR, NMR studies and DFT-B3LYP calculation.// DaltonTransaction – 2015. V. 44. P.16506 – 16514. ResearchGate, IF – 3.84.
  23. Holmström K. M., Marina N., Baev A. Y., Wood N. W., Gourine A. V., Abramov A. Y. Signaling properties of inorganic polyphosphate in the mammalian brain // Nature Communications‒ 2013. ‒ V. 4, ‒ pp. 1362.ResearchGate, IF – 12.03
  24. Zamaraeva M., Charishnikova O., Saidkhodjaev A., Isidorov V., Granosik M., Rojalski M., Watala C. Calcium mobilization by the plant estrogen ferutinin does not induce blood platelet aggregation.// PharmacologicalReports – 2010. V.62. P.1117-1126. ResearchGate, IF – 1.99